Search results for "field effect transistor"

showing 10 items of 20 documents

Layout influence on microwave performance of graphene field effect transistors

2018

The authors report on an in-depth statistical and parametrical investigation on the microwave performance of graphene FETs on sapphire substrate. The devices differ for the gate-drain/source distance and for the gate length, having kept instead the gate width constant. Microwave S -parameters have been measured for the different devices. Their results demonstrate that the cut-off frequency does not monotonically increase with the scaling of the device geometry and that it exists an optimal region in the gate-drain/source and gate-length space which maximises the microwave performance.

TechnologyMaterials science02 engineering and technologyHardware_PERFORMANCEANDRELIABILITYSettore ING-INF/01 - Elettronica01 natural scienceslaw.inventionComputer Science::Hardware ArchitectureComputer Science::Emerging Technologieslaw0103 physical sciencesHardware_INTEGRATEDCIRCUITSElectrical and Electronic EngineeringScaling010302 applied physicsbusiness.industryGrapheneComputerSystemsOrganization_COMPUTER-COMMUNICATIONNETWORKSWide-bandgap semiconductorSettore ING-INF/02 - Campi Elettromagnetici021001 nanoscience & nanotechnologyGraphene field effect transistorsSapphire substrateOptoelectronicsField-effect transistorGraphene0210 nano-technologyConstant (mathematics)businessMicrowaveddc:600MicrowaveHardware_LOGICDESIGN
researchProduct

Radiofrequency performances of different Graphene Field Effect Transistors geometries

2016

In this work, we investigated on microwave parameters geometry dependence in Graphene Field Effect Transistors (GFETs). A DC and RF characterization of the fabricated GFETs has been performed. The parametric analysis was carried out on 24 GFET families fabricated on the same chip and differing only for the channel length (Δ) and the gate length (Lg). In order to obtain a statistical average, each family included ten devices with the same geometry.Our study demonstrates that the output resistance and the cut-off frequency depend on both Δ and Lg. As expected, Rout increases with the graphene channel surface thus confirming the good quality of the fabrication procedures. An optimum region whi…

Graphene Graphene Field Effect Transistors Graphene microwave transistors
researchProduct

Glyphosate Sensor Based on Nanostructured Water-Gated CuO Field-Effect Transistor

2022

This research presents a comparative analysis of water-gated thin film transistors based on a copper oxide (CuO) semiconductor in the form of a smooth film and a nanostructured surface. A smooth CuO film was deposited through reactive magnetron sputtering followed by annealing in atmosphere at a temperature of 280 (Formula presented.) C. Copper oxide nanostructures were obtained by hydrothermal synthesis on a preliminary magnetron sputtered 2 nm thick CuO precursor followed by annealing at 280 (Formula presented.) C. An X-ray diffraction (XRD) analysis of the samples revealed the presence of a tenorite (CuO) phase with a predominant orientation of (002). Scanning electron microscopy (SEM) a…

glyphosatenanostructures:NATURAL SCIENCES::Physics [Research Subject Categories]thin-film transistorElectrical and Electronic Engineeringwater-gated field effect transistorBiochemistryInstrumentationcopper oxideAtomic and Molecular Physics and OpticsAnalytical ChemistrySensors
researchProduct

Nanostructural depth-profile and field-effect properties of poly(alkoxyphenylene-thienylene) Langmuir-Schäfer thin-films

2008

The correlations between morphological features and field-effect properties of poly(alkoxyphenylene-thiophene) thin Langmuir–Schafer film deposited on differently terminated gate dielectric surfaces, namely bare and methyl functionalized thermal silicon dioxide (t-SiO2), have been systematically studied. The film morphology has been investigated at different film thickness by Scanning Force Microscopy. Films thicker than a few layers show comparable morphology on both dielectric surfaces while differences are seen for the ultra-thin polymer deposit in close proximity to the substrate. Such deposit is notably more heterogeneous on bare t-SiO2, while a more compact and uniform nanogranular st…

Materials scienceSiliconSilicon dioxideGate dielectricField effectchemistry.chemical_elementConducting polymersNanotechnologySubstrate (electronics)Dielectricchemistry.chemical_compoundMaterials ChemistryComposite materialThin filmConductive polymerLangmuir-Schäfer organic thin-filmsOrganic–inorganic interfaceConducting polymers; Langmuir-Schäfer organic thin-films; Organic field effect transistors; Organic-inorganic interfaceOrganic-inorganic interfaceConducting polymerLangmuir–Schäfer filmMetals and AlloysSurfaces and InterfacesSurfaces Coatings and FilmsElectronic Optical and Magnetic Materialstransistors thin films nanotechnology Langmuir-ShaeferchemistryOrganic field effect transistorsOrganic field effect transistor
researchProduct

Electrochemical Fabrication of Inorganic/Organic Field Effect Transistor

2010

After discovery of conducting polymers and the possibility to modify their electrical properties (from insulating to metallic-like behaviour) by doping and a careful choice of the processing conditions, a large amount of research effort has been devoted to the theoretical understanding of their solid state properties as well as to exploit the possible application of conducting polymers in many technological fields including: large area organic electronics, polymer photovoltaic cell and sensors (1-2). Organic thin-film transistors appears very promising for the development of low cost, flexible and disposable plastic electronics. In order to reduce the operating voltage it has been suggested…

Settore ING-IND/23 - Chimica Fisica ApplicataElectrochemical Fabrication Inorganic/Organic strcture Field Effect TransistorSettore ING-INF/01 - Elettronica
researchProduct

Surface plasmon effects on carbon nanotube field effect transistors

2011

Herein, we experimentally demonstrate surface plasmon polariton (SPP) induced changes in the conductivity of a carbon nanotube field effect transistor (CNT FET). SPP excitation is done via Kretschmann configuration while the measured CNT FET is situated on the opposite side of the metal layer away from the laser, but within reach of the launched SPPs. We observe a shift of 0.4 V in effective gate voltage. SPP-intermediated desorption of physisorbed oxygen from the device is discussed as a likely explanation of the observed effect. This effect is visible even at low SPP intensities and within a near-infrared range. peerReviewed

Materials sciencePhysics and Astronomy (miscellaneous)transistoriNanotechnologyCarbon nanotubehiilinanoputkiplasmonicslaw.inventionlawfield effect transistorspolaritonitPlasmonta114carbon nanotubesbusiness.industryhiilinanoputketSurface plasmonNanofysiikkananoscienceSurface plasmon polaritonCarbon nanotube field-effect transistorpintaplasmonitCarbon nanotube quantum dotplasmoniOptoelectronicsField-effect transistorbusinessnanotube devicesLocalized surface plasmon
researchProduct

Fabrication and analysis of the layout impact in Graphene Field Effect Transistors (GFETs)

2016

In this work we focused on the analysis of Graphene Field Effect Transistor (GFET) microwave parameters dependence on geometries. In particular, a statistical, experimental investigation of the cut-off frequency (ft) dependency on both the gate-drain/source distance (Δ) and the gate length (Lg) was carried out. 24 GFET families on the same chip were fabricated, each one made of 10 identical (same geometry) devices. The analysis of the measured data shows that ft is both Δ and Lg dependent, and that there exists an optimal region in Δ and Lg design space.

Graphene Graphene Field Effect Transistor Graphene Microwave Transistors
researchProduct

Know your full potential: Quantitative Kelvin probe force microscopy on nanoscale electrical devices

2018

In this study we investigate the influence of the operation method in Kelvin probe force microscopy (KPFM) on the measured potential distribution. KPFM is widely used to map the nanoscale potential distribution in operating devices, e.g., in thin film transistors or on cross sections of functional solar cells. Quantitative surface potential measurements are crucial for understanding the operation principles of functional nanostructures in these electronic devices. Nevertheless, KPFM is prone to certain imaging artifacts, such as crosstalk from topography or stray electric fields. Here, we compare different amplitude modulation (AM) and frequency modulation (FM) KPFM methods on a reference s…

FM-KPFMMaterials scienceNanostructureGeneral Physics and Astronomy02 engineering and technologylcsh:Chemical technology01 natural sciencesAM-KPFMlcsh:TechnologyFull Research Paperlaw.inventioncrosstalkfield effect transistorlawElectric field0103 physical sciencesMicroscopySolar cellNanotechnologyfrequency modulation sidebandGeneral Materials Sciencelcsh:TP1-1185Electrical and Electronic Engineeringlcsh:Sciencequantitative Kelvin probe force microscopy010302 applied physicsKelvin probe force microscopecross sectionbusiness.industrylcsh:Tfrequency modulation heterodyne021001 nanoscience & nanotechnologyAM off resonanceAM lift modelcsh:QC1-999NanoscienceAM second eigenmodesolar cellsOptoelectronicsField-effect transistorlcsh:Q0210 nano-technologybusinessFrequency modulationlcsh:PhysicsVoltageBeilstein Journal of Nanotechnology
researchProduct

Aligned microcontact printing of biomolecules on microelectronic device surfaces

2001

Microcontact printing (/spl mu/CP) of extracellular matrix proteins is a fascinating approach to control cell positioning and outgrowth, which is essential in the development of applications ranging from cellular biosensors to tissue engineering. Microelectronic devices can be used to detect the activity from a large number of recording sites over the long term. However, signals from cells can only be recorded at small sensitive spots. Here, the authors present an innovative setup to perform aligned /spl mu/CP of extracellular matrix proteins on microelectronic devices in order to guide the growth of electrogenic cells specifically to these sensitive spots. The authors' system is based on t…

extra cellular matrixMaterials scienceTransistors ElectronicSurface PropertiesSiliconesBiomedical EngineeringmicroelectrodesNanotechnologyHippocampuslaw.inventionRats Sprague-DawleyTissue engineeringlawfield effect transistorsAnimalsMicroelectronicsDimethylpolysiloxanesCells CulturedNeuronschemistry.chemical_classificationbusiness.industryBiomoleculeOptical tableReproducibility of ResultsalignmentEquipment Designmicrocontact printing (mu CP)JExtracellular MatrixRatsMicroelectrodeextracellular recordingchemistry3D-BioMEMSMicrocontact printingmicroelectronic devicesField-effect transistorneuronal networksNeural Networks ComputerbusinessMicroelectrodesBiosensorIEEE Transactions on Biomedical Engineering
researchProduct

Impact of GFETs geometries on RF performances

2016

Graphene is a relatively new material whose unique properties have attracted significant interest for its use in electronic and photonic applications. In particular, field effect has been proved in graphene samples and the observed high carrier mobility makes graphene an interesting solution for high frequency electronics. In this work, we focused on the analysis of microwave parameters dependence on geometries in Graphene Field Effect Transistors (GFETs). In particular, a statistical, experimental investigation of the cut-off frequency (fT) and of the output impedance (Zout) dependency on both the gate-drain/source distance (Δ) and the gate length (Lg) was carried out. 24 GFET families wer…

Graphene Graphene Field Effect Transistors Graphene Microwave Transistors
researchProduct